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Abstract 

We find sufficient conditions for the components of an SU(2) connection to form a hypercontact 
structure. The hypercontact structure obtained depends canonically on the connection. The result 
implies that the components of any l-(anti) instanton form a hypercontact structure on S 7. 

Subj. Class.: Differential geometry 
1991 MSC: 53C12, 53C15 
Keywords: 1 -(anti) instanton; Contact forms; Contact structures; Moduli space; Hyperkaehler structures; 
Hypercontact structures; 3-Sasakian structures; Hyper Tashiro construction 

1. Introduct ion 

This paper is a complement  to [4]. We construct here a canonical hypercontact structure 

underlying any 1-(anti) instanton. We also show that Geiges-Thomas  remark that the basic 

instanton yields a hypercontact  structure can be obtained as a consequence of  the "hyper" 

Tashiro construction. 

The notion of hypercontact structure was recently coined by Geiges and Thomas [9]; it 

generalizes the notion of  3-Sasakian structures, which have been known for a couple of  

decades, see for instance [12]. For a recent extensive study of  3-Sasakian structures, we 

refer to [5,6]. These structures are the odd versions of  hyperkaehler  structures. We refer 

to [2] for a short but deep introduction to hyperkaehler  manifolds which have been known 

for some decades as well, but only regained interest after the discovery of  their connection 

with gauge theory and supersymmetry in mathematical physics [ 11 ]. Recently Geiges and 

Thomas pointed out a connection between hypercontact structures and gauge theory. 
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An instanton is an (anti) self-dual connection of an SU (2) bundle over the 4-dimensional 

sphere S 4. Such an instanton is determined, up to a gauge transformation by an integer, the 

instanton number. We call "k-instantons" those which correspond to the integer k. Geiges 

and Thomas proved that the components of  the basic l-(anti) instanton form a hypercontact 

structure on S 7 [8]. 

The starting point of  the research reported here was an attempt to find a direct proof of 

that fact. In Section 3, we give such a proof. It is a consequence of  the "hyper" version of  

the Tashiro construction [3]. In [4], we extended, supplemented and formalized Geiges -  

Thomas arguments into a theorem asserting that the components of any 1-(anti) instanton 

are contact forms. Here, we prove that actually they form a hypercontact structure. The 

underlying contact structure depends canonically on the instanton. Finally, we propose here 

a definition of  "hypercontact  structures" which slightly relaxes Ge iges -Thomas '  and seems 

more appropriate to contact geometry. 

2. Hypercontact  structures 

Recall that a hyperkaehler structure on a riemannian manifold (M, g) is a set of three 

complex structures J1, J2, J3 such that 

g o J i  = g ,  i = 1 ,2 ,3 ,  (2.1) 

JIJ2 = - J 2 J l  = J3, J3J1 = - J I J 3  = -/2, J2J3 = -J3J2  = Jl,  (2.2) 

do9 i = 0, (2.3) 

where wi are defined by o)i(X, Y) = g(X,  J iY)  for all vector fields X, Y. 

A hyperkaehler  manifold must be 4n-dimensional  since its tangent space is a quaternionic 

vector bundle. It comes equipped with three symplectic forms wi. 

A hypercontact structure on a (4n + 3)-dimensional manifold is the analogue of  a hy- 

perkaehler manifold. Roughly speaking, it consists of  a set of three contact forms with a 

hyperkaehler  structure on each fiber of  the intersection of  the three contact distributions. 

Recall that a contact form on a (2n + 1)-dimensional manifold is a 1-form a such that 

/~ (da)  n is everywhere non-zero. A contact structure on a (2n + 1)-dimensional manifold 

M is a hyperplane field F C T M  which is locally the kernel of (a locally defined) contact 

form. If  there is a globally defined contact form ot such that Ker ot = F ,  then the contact struc- 

ture is called a contact structure in the "narrow sense" and one says it is defined by the contact 

form a ;  the distribution F is called the contact distribution. Two contact forms a and c~' de- 

fine the same contact structure if and only if there exists a nowhere zero function ~ such that 

~ '  = Xot. Problems of Mechanics deal directly with "contact forms", while Contact Geo- 

metry deals more with "contact structures". Geiges and Thomas gave the definition of 

hypercontact  structures in terms of  "contact forms". We propose in this paper a definition 

in terms of "contact structures". 
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Defini t ion2.1  (Geiges-Thomas [9]). A set of  three contact forms {otl,ot2, ot3} on a 

(4n + 3)-dimensional manifold M is a hypercontact structure if there exists a rieman- 
nian metric g, three 1-1 tensor fields ~bi, three 1-forms 0i and three vector fields ~i on  M 

such that: 

rli (~j) = Sij, 

4~i~j = ~ijk~k, 

rli o ~j : Eij k ~k, 

epi4~j ( x )  = -6~j X + ~j (X)~i + ~jk4~k X, 

g(X, Y) = g(~gi X, ~bi Y) + rli(X)oi(Y), 

g(X, dpiY ) = doti(X , Y) 

for all vector fields X, Y. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Here Eijk is zero when all the symbols are not distinct, and if they are, it is equal to the 
signature of  the corresponding permutation of the integers 1, 2, 3. If furthermore, we have: 

Oti : 0i ,  (2 .10)  

L~ig = 0, (2.11) 

[~i, ~j] = 2fijk~k, (2.12) 

we say that [a l ,  ~2, or3} is a 3-Sasakian structure. 

R e m a r k  2.2. 

(1) In Eq. (2.11), Lx stands for the Lie derivative and Eq. (2.11) says that the vector fields 
are Killing with respect to the riemannian metric g. This is a very strong condition 

which makes 3-Sasakian structures rigid. Hypercontact structures are more flexible: for 

instance they admit connected sums [9]. 
(2) Conditions (2.7)-(2.9) say that on the intersection of  the contact distribution, (~bi, g) 

form hyperkaehler structures in each fiber. 
(3) The definition given above is in terms of "contact forms". We propose here to recapture 

the essential notions by using "contact structures". Perhaps it is necessary to assume 

that the contact structures are defined by global contact forms. 

Definition 2.3. Ase tof th reecontac t  structures Fl,  F2, F3 (defined by global contact forms) 

on a (4n + 3)-dimensional manifold M is said to be a hypercontact structure if: 
(i) H = F1 N/:2 A F3 is a 4n-dimensional distribution. 

(ii) There exist a riemannian metric g and three endomorphisms ~bi of  H satisfying the 
quaternionic identities (2.2) and such that g ( ~ i X ,  ~PiY) = g ( X ,  Y)  for all sections 
X, Y o f H ,  

(iii) For any choice of  contact forms ot i representing Fi, there are positive functions Zi such 
that doti(X, Y) = )~ig(X, ~pi Y)  for all sections X, Y of H.  

(1) This definition is independent of  the choice of  the contact forms o/i since on the con- 
tact distribution, dot i defines a conformal symplectic structure depending only on the 
contact structure Hi. 
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(2) There exist contact forms oti, defining Hi such that dot i (X,  Y) = g(X, dpiY ) for all 

sections X, Y of H.  Indeed, ifa~ are contact forms like in (iii), such that da~(X, Y) = 

~i g (X, ~bi Y) for all sections X, Y of  H,  then setting Of i = ( l/)~i )Old, we get dot i (X,  Y) = 

g(X, 49i Y) for all sections X, Y of H.  

(3) The Geiges -Thomas  definition needs more assumptions. Going from our definition to 

theirs will involve non-canonic choices, like an orthonormal basis of the orthogonal 

complement  to H,  and a set of three contact forms ai  representing the contact struc- 

tures Hi and such that doti(X , Y) = g(X, qbiY ) for all sections X, Y of H. Assume 

now the orthonormal complement  V of H admits three orthonormal sections ~j, ~2, ~3 

and let r/i be the dual forms of  sei. Now extend the definition of  the endomorphisms 4'i 

of H by Eq. (2.5) in the Geiges-Thomas  definition. It is easy to verify that with the 

above choices of  oti, r/i, ~bi, g, Eqs. (2.4)-(2.9) hold, so we get a hypercontact struc- 

ture in the Geiges-Thomas  sense. In practice, the ~i will be proportional to the Reeb 

fields of oti. 

This procedure is more geometric and constructive. We will use it in the proof of 

Theorem 2. 

2.1. Hypersurfaces of hypercontact type in hyperkaehler manifolds 

A classical way of getting contact manifolds is to obtain them as hypersurfaces of  contact 

type in symplectic manifolds [ 16]. Let p : M ~ P be the inclusion of  a hypersurface M into 

a symplectic manifold (P ,  Y2). If  there exists a vector field Von a neigbourhood of  M, which 

is transverse to M, and which is a Liouvil le vector field, meaning that L v £2 ---- ~.12, for some 

positive function ~., then t~ = p* (i ( V),(2 ) is a contact form on M such that p* I2 = ( 1 / k) dot, 

where k ---- X o p. 

Here Lv stands for the Lie derivative in the direction of the vector field V, and i(V) is 

the interior product with V. 

We can try to do the same with a hypersurface in a hyperkaehler  manifold. The point 

is that there must be a transverse vector field which is Liouvil le with respect to the three 

symplectic forms [9]. 

We consider here a special case which is particularly nice: the "hyper" Tashiro construc- 

tion. 

First let us recall the Tashiro construction. (See for instance [3].) 

Let (P,  G, J )  be an almost hermitian manifold: J is an almost complex structure and G 

is a riemannian metric such that G o J = G. Let p : M ~ P be an oriented hypersurface. 

The unit "outward" normal vector to M is well defined: it is a section C of  the normal 

bundle such that G(x)(Cx, Cx) = 1 and G(x)(Cx, Xx) = 0 for all x in M, and all tangent 

vector Xx to M at x. Since Gx(JxCx, Cx) = Gx(J2x Cx, JxCx) = -Gx(Cx,  JxCx), we see 

that Gx(JxCx, Cx) = 0, hence JxCx is tangent to M. We thus have defined a vector field 

on M such that 

(P*¢)x = - Jx Cx, (2.13) 
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which is called the characteristic vector field of  the hypersurface M [3]. For any vector field 

X on M, we let r/(X) be the norm of the projection of  J p ,  X onto the C-direction, i.e. 

t l (X) = G(C,  J p ,  X) .  (2.14) 

Therefore J p ,  X - o ( X ) C  is tangent to M. We have thus defined a vector field cpX such 

that 

p,(cpX) : J p ,  X - ~I(X)C. (2.15) 

The 1-form 0, the vector field ~, the 1-1 tensor field q~, and the restriction g = p*G of the 

metric G to M satisfy the following identities: 

0(~) = 1, 

¢~ = o, 

CZx  = - x  + o ( x ) L  

g (X ,  Y) = g((/)x, (bY) + o ( X ) o ( Y  ). 

As a consequence of  (2.15), (2.16) and (2.19), we have 

r/o ¢ ---- O; g(X ,  ~) = rl(X). 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

The two skew symmetric forms: S2(X, Y) = G(X,  J Y )  on P and q~(U, V) = g(U, ~bV) 

on M have maximum rank. Hence the kernel of  q~ is 1-dimensional and is spanned by ~. 

Moreover, p'Y2 = q0. We have: 

r/A qo n ~ 0, (2.21) 

p*[i(C)f2] = r/. (2.22) 

If  now we assume that S-2 is closed (i.e. a symplectic form) and that C is Liouville, then 

17 is a contact form. 
Now suppose we have a hyperkaehler manifold (p4n+4, G, Jl, ,]2, J3) and let p: 

M4n+3 ~ p4n+4 be a hypersurface such that the unit normal vector field along M is 

Liouville for the three symplectic forms ~2i (X, Y) = G(X ,  Ji Y), i = 1,2, 3, i.e. LcU2i = 

Xi S2i. Then the l-forms ?/i are contact forms and we have 

drli : 12ip*A~2 = 12i q), (2.23) 

where 12i = (~-i O p ) .  

Lemma2 .4 .  Suppose that 121 = 122 : 123 : 12 is a constant, then the contact forms 

(otl, or2, or3), where ot i : (1/12)r/i, are a hypercontact structure. 

Proof  We have the three vector fields sek defined by p,sek = - J k C ,  the three 1-forms 

r/k defined by 0k(X) = G(C,  Jkp,  X)  and three 1-1 tensor fields q~k defined by p,49kX = 
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J k p ,  X - Ok ( X ) C .  We are now going to prove that the triplet (r/k, 4)k, ~k) satisfy conditions 

(2.4)-(2.9) of  the definition of  a hypercontact structure. 

The hypothesis of  the lemma guarantees that condition (2.9) holds. Condition (2.8) was 
verified by construction: it is the identity (2.19) in the Tashiro construction. To verify (2.4), 

we write 

r/i(~j ) = G ( C ,  J i ( io ,~j)  = - G ( C ,  Ji J j C )  = 6ij.  

To check (2.5), we write 

r/i (fbj X )  = G ( C ,  Ji p ,  qSj X )  = G ( C ,  Ji ( J j p ,  X - r/j ( X ) C ) )  

= G ( C ,  J i J j p ,  X )  - r / j ( X ) G ( C ,  J i C )  

= G ( C ,  6 i j kJkp ,  X )  = ~5ijkr/k(X). 

To verify (2.6), just observe that p,(qSi~j ) = J i ( P , ~ j )  - r/i(~j ) C  -= - Ji J j C  - ~ i jC .  The 
only non-trivial relation is (2.7). For i ---- j this is the relation (2.18) in the Tashiro construc- 

tion. We verify that 

~bl~bZX = r / z (X)~l  q'-q~3 X ,  

and let the reader establish the other relations by circular permutations. 

P,(qSlq52X) = J l  (P ,~b2X) - r/1 (q52X)C 

= J I ( J 2 p ,  X - r / 2 ( X ) C )  - r /3(X)C 

= J I J z p ,  X + r / 2 ( X ) p , ~ I  - r / 3 ( X ) C  

= (J3p ,  X - r / 3 ( X ) C  ) + r / 2 ( X ) p , ~ I  

= p.(4,3x + r / 2 ( x ) ~ ) .  

The proof of  the lemma is now complete. [] 

E x a m p l e  2.5. Let P = ~4n : R4 × ~4 X . . .  × ~4  and ,,Tk = (Jk . . . . .  Jk), where Jk are 

the following complex structures on R4: 

Jl Ol = 0 2 ,  J103 = 04, J2Ol = 03, 

J202 ~- 04, J301 = - 0 4 ,  J302 = 03. 

Let G be the standard dot product o n  [R 4n. Then (P,  G, ~ ,  i = 1,2, 3) is a hyper- 

kaehler manifold. The sphere S an-1 is the set f - l ( 1 )  where f ( x )  = Ixl 2. Let C be 

half the gradient of  f .  Then C is a Liouviile field with L c I 2 k  = 2~k. By the lemma, 
the l-forms Ok and O~k = ½r/k are contact forms and (al ,  or2, or3) are a hypercontact 

structure. 
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Writing points in ~4n as (xl ,  x~, x~, x~)i=l  ..... n, the contact forms 0/k read: 

n 

0/1 --~ Z 
i=1 

n 

0/2 = Z  
i=1 

0/3---- £ 
i=! 

• i dx~ --1-x~ d x j -  i dx~, x~ dx  I - x I x 3 

i i i dx~ -Jr-X~ dx~ 1 i dxi2 , x 3 dx I - x I - x 4 

i i i dx~ + i dx~ i i X 4dx  1 - -X 1 X3 - -X 2 d x  3. 

3. Instantons 

An SU(2)  bundle Jr : M --+ S 4 over S 4 is determined by an integer k~, which is the 

degree of  the transition map of  two sections defined over U, V where U = S 4 - {p} and 

V = S 4 - {q}. The transition is a map from U N V ~ S 3 into SU(2)  = S 3. Self-dual 

and anti-self-dual connections on an SU(2)  bundle over S 4 with characteristic integer kjr 

are called kjr-instantons and anti-instantons. These are the minima of  the Yang-Mil ls  func- 

tional. See At iyah 's  collected work [1 ] for a comprehensive foundation of  gauge theory. 

At iyah-Dr in fe ld -Hi tch in -Manin  (ADHM) gave a complete construction of  instantons [ 1 ]. 

For kjr ---- 1 they proved that any l-instanton is gauge equivalent to an instanton 0/such that 

iz*ot = A ( x )  is given by the following expression: 

. { ( x - a ) d ~  "~ 
# * 0 / =  ' m t ~  ~ i x - - ~ 2 ) '  

where a 6 H is a quaternionic parameter  and ~. is a positive real number, and/z  : ~4 ~ S 7 

is the following section over S 4 - (0, 0, 0, 0, 1) ~ ~4: 

(x, 1) 
U(x) --  

(1 -~-IXl2) 1/2 

The instanton corresponding to the case a = 0, ~. = 1 is called the basic instanton. Its 

potential is 

x d 2  ) 
A ( x ) = I m  l ~ - ~ - I  2 ' 

Anti-instantons have exactly the same description, modulo putting the bars over x ' s  instead 

of  dx 's .  Geometrically,  this corresponds to a change of  the orientation of  the bundle. 

First a review of  some quaternionic notations. The field H of  quaternions is the set 

{x ---- xl + x2i + x3j + x4k, xi E ~} where i e = je = k 2 = _1 and ij = - j i  = k; 

jk  = - k j  = i; ki = - i k  = j.  We naturally identify H with ~4 and with C 2. Wr i t ingx  = xl + 

x2i +x3j  + x 4 k  = Z l +z2j  where Z l ---- x l + x e i ,  z2 = x3 +x4 i  establishes an identification of  

H and C 2. The conjugate ~ of  a quaternion x is xl - x z i - x 3 j  - x 4 k  and x ~  = x x  = Ix l 2. Also 

H can be viewed as the set of  2 × 2 complex matrices: x = zl +z2j  corresponds to the matrix 

Zl Z2 t 
--22 Zl ' 
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the determinant of  which is the square norm of  x. Therefore SU (2) is the group of norm- 1 

quaternions, i.e. a sphere S 3. Its Lie algebra su (2) is the set of  skew hermitian matrices with 

zero trace. The Pauli matrices 

(; o) (o 1 ;) 
form a basis of  su (2). Their commutation relations are 

[r l ,  r2] = 2r3, [r l ,  r3] ---- --2r2, [r2, r3] = 2r l .  

Hence su(2)  is isomorphic with the imaginary part {x2i + x3j q- x4k} of H: we identify 

rl with i, r2 with j and r3 with k. 

Now S 7 = {(p, q) c H 2, IPl 2 + Iql 2 = 1}, and S 4 is the H projective line, i.e. the set of  

equivalence classes [p, q] of  elements in H 2 - {0}: (p,  q) ~ (p ' ,  q ' )  iff p = rp',  q = rq'  

for some r c H - {0}. 

The bundle map rr of  the tautological bundle 7r : S 7 --~ S 4 assigns to (p,  q) c S 7 the 

equivalence class [p, q] 6 S 4. This is a principal SU(2)  bundle with Pontryagin number 

k ---- +1 .  It is easy to see that 

or(p, q) = Im(p  d p  + q d~) 

is a connection such that 

#*or = I m  1 + Ix12/ 

where /z  : ~4 ~ S 7 is the section over S 4 - (0, 0, 0, 0, 1) ~ ~4: 

(x, 1) 
u (x )  - 

(1 + Ixl2)l/2" 

In other words, ot is the basic instanton [1]. See [13, pp. 100-104]. 

Setting p = x l + x2i + x3j + x4k, q = yl + y2i + y3j + y4k, andot = (oq) i+(~2) j+(o t3)k ,  

we have: 

~l = x2 dxj - x l  dx2 + x4 dx3 - x 3  dx4 q-Y2 dyl  - Yl dy2 + Y4 dy3 - Y3 dy4, 

~2 = x3 dXl - Xl dx3 q- x2 dx4 - x4 dx2 q- Y3 dyl  - Yl dy3 + Y2 dy4 - Y4 dy2, 

~3 ----- x4 dXl - Xl dx4 + x3 dx2 - x2 dx3 q- Y4 dyl  - Yl dy4 + Y3 dy2 - Y2 dy3. 

These forms are exactly those we constructed before by the "hyper" Tashiro construction, 

and we showed they form a hypercontact  structure. 

Therefore, we have given a direct proof  of the following result (see also [4]): 

T h e o r e m  3.1 (Geiges-Thomas  [8]). The components o f  the basic instanton form a hyper- 

contact structure on S 7. 

Let us now give a brief invariant description of  instantons following [7] or [14]. Let 

r/s7 be the H-bundle associated with the tautological principal bundle rr. Let D be the 
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connection induced on r/s4 by the connection or. The double cover SL(2,  H) of the group 

SO (5, 1) of  conformal transformations of  S 4 acts on 0s 4. Since the Yang-Mil ls  equations 

are conformally invariant, the induced connection g ' D ,  for g in SL(2,  H), is self-dual. A 

difficult theorem of  Atiyah et al. [ 1 ] asserts that we get this way all the gauge equivalences 

of instantons. The formulas for instantons we wrote before are nothing else than the local 

description of  this fact. Since SU(2)  acts freely on 0s 7, each connection g*D comes from 

a unique connection C~g on the principal bundle [15]. These are the instantons we consider 
on S 7. 

The main result of this paper is the following generalization of  the Geiges-Thomas  

theorem. 

Theorem 3.2. The components o f  any 1-(anti) instanton form a hypercontact structure 
on S 7. 

R e m a r k  3.3. We insist that this theorem is not trivial. Indeed, although we proved that the 

components of  a form a hypercontact structure, this does not imply that the components of  

ag form a hypercontact  structure as well. Observe that the group SL(2,  H) does not act on 

S 7, hence ag is not the pull-back of  some connection on 7r by a diffeomorphism of S 7. 

Theorem 3.2 is a consequence of  the following generalization of  a result of [4]. 

Theorem 3.4. Let zr: P ~ M be a principal SU(2)  bundle and ot a connection with 

curvature ~ and let a i ,  S2i, i = 1, 2, 3, be the components o f  u and S2 along the Pauli ma- 

trices (basis o f  su(2)).  Suppose there is a family  of  sections ~rj : Uj ~ P trivializing 

the bundle (here {U j} is an open cover over which the bundle is trivial), and smooth 

nowhere vanishing functions vj on Uj such that {vjcrj ~ i} ,  i = 1, 2, 3, form a hyper- 

kaehler structure on Uj, then {oU, or2, ot3 } form a hypercontact structure on P. 

In [4, Theorem 2] we only proved that the three forms {oti} are contact forms. Here we 

show how to put together an underlying hypercontact structure. This hypercontact structure 

happens to be defined canonically by the connection. 

Proof  o f  Theorem 3.4. We need to recall some notations and part of  the proof of  Theorem 

2 of  [4]. 

Let { U } be a trivializing open cover like in the hypothesis of  the theorem, and let a : U -+ 

P be a section and v a smooth nowhere zero function on U such that {wi = wr*f2i }, i = 

1, 2, 3, form a hypersymplectic structure, i.e. there exists a riemannian metric g on U, three 

almost complex structures Ji on U satisfying the quaternionic identities (see definition 

above) and such that g(J iX ,  Y) = 113i (X, Y) and g o J i  = g. 
We denote by H C T ( P )  the horizontal space, i.e. the kernel o f ~  and by G = rr*g the 

pull-back of  the metric g on Pu = Jr - ]  (U). If X is a vector field on P,  we denote by Xh its 

horizontal component.  If X is horizontal, then (cr.(zr.X))h = X and 12(Xh, .) = S2(X, -) 

since S-2 vanishes on vertical vectors. 
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Let now X, Y be two horizontal vector fields on P at a(x ) ,  x ~ U: 

Y2i(a(x))(X,  Y) ~-- ~('2i (O'(X))((O',~,X)h, (a ,  Yr, Y)h) 

= S2i (a (x)) (a ,  yr, X, a ,  rc, Y) 

~- (a * ~'-2i )(x )(yr, X , 7g, Y ) 

= ( l /v)g(JiTr ,  X, 7r, Y). 

This shows that ~"2 i are non-degenerate at Ha(x), x ~ U, since zr. is an isomorphism 

between the horizontal space at a ( x )  and the tangent space at x c U. 

Any other point p 6 Pu has the form p = a ( x ) .  a = R a ( a ( x ) )  for some a 6 SU(2).  

If Xp is a horizontal vector field at p = a (x )  • a, i.e. Xp ~ lip, then Xp = (R,) .X~c~ ~. 

Hence for Xp, Yp c Hp, we have 

n(p)(Xp, Yp)= 

But the curvature form 

ad a i " su(2) --+ su(2) 

Y2(Ra(a(x ) ) ) ( (Ra) ,Xa(x ) ,  (Ra)*Ya(x)) 

satisfies R * ~  = ada-i (Y2) = aY2a -1. Let (~ij) be the matrix of 

within the basis r l ,  r2, r3, then: 

3 
ac2i (p ) (Xp ,  Yp) : Z IdijS'2J (¢7(x))(Xa(x), Ya(x)) 

j=l  

3 
: Z Ui j (1 /v)g(J jTr .X,  rr.Y) = (1/v)g(clgiyr.X , zr.Y), 

j= l  

~-- Z 3 = I  ]2ijJ j. Since ad,, ~ preserves the natural inner product: (m, n) = where 

-½tr (m.n) ,  the matrix (#i j) is an orthogonal matrix. This implies that the 1-1 tensors 

defined on U satisfy the quaterrlionic identities since the Ji 'S did. In particular they define 

complex structures on U depending on a E SU(2).  The equation 

S-2i(p)(Xp, Yp) = (1/v)g((Pizr, X, re, Y) (3.1) 

shows that l2i are non-degenerate at the horizontal distribution at cr (x) • a. 

Furthermore, since the metric g over U was compatible with the complex structures Ji, 

i.e. g o Ji = g, and since (lzij) is an orthogonal matrix, we must have 

g(clgi X, c19i Y) = g(X,  Y) (3.2) 

for all horizontal vector fields X, Y. 

Let us now check that the mappings dot~' • T P  --+ T*P  defined b~': dot~(X)(Y) = 

dot i (X ,  Y )  map bijectively H to H*. It is sufficient to check that do'i (X,  ~k) = 0 for all ~k 

and all sections X of H. The structural equation says that ,.('2 i = d~i  -k- ~ j  /x ~t / . 

Hence 

dui (X,  ~k) : (ff2i -- Otj A otl)(X, ~k) = 0, 
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since i(~k)$2i = O, ~k being a vertical vector field and ott(X) = 0 since X is horizontal. 
We can now define three endomorphisms of H as follows: 

~ = -(dot~)  -~ o (dot3b), 

~2 = -(dot3b) -1 o (dot~), 

~3 = -(dot~)  -~ o (dot~). 

(3.3) 

(3.4) 

(3.5) 

These three endomorphisms satisfy the quaternionic identities. Indeed, we saw that over 

each open set U, the forms ~(2 i w e r e  given by (3.1). Hence over that open set, t~) i = 

(gb) - I  o (doti)b, where gv stands for the metric (1/v)g in Eq. (3.1) and gb . T P  ~ T*P 

is gb(X) (Y )  = gv(X, Y). Consequently, we see that the only locally defined @yl o q~j = 
(((dot/)b)-1 o gb)(((gb) -1) o dub) coincides with the globally defined (da b ) - l  o dub. Since 

the locally defined object satisfy the quaternionic identities on H so do the endomorphisms 
~bi. Now we define a metric on H by setting 

gb = (dot~) o ~ ? '  = (dot~) o ~ ; '  = (dot~) o ~ ; 1  (3.6) 

This is positive definite since it is so over each open set where it is equal to go. We now 
extend ~bi and g in the vertical direction by 

(Pi(~j) = Eijk~k, g(~i, ~j) = ~ij, g ( X ,  ~k) = 0 (3.7) 

for any horizontal vector field X. Finally, we get the three 1-forms Ok by setting 

ok(X) = g(X,  ~k). (3.8) 

Let us now verify that the set (otk, Ok, ~k, ~bk, g) verify the conditions (2.4)-(2.9) (with 
the same notations), so the set (oq, ot2, ot3) form a hypercontact structure. 

Conditions (2.4) and (2.5) come straight from (3.7) and (3.8). Condition (2.9) results from 
(3.2) and the definition of g in (3.6). Condition (2.6) and (2.7) are immediate if we compute 
both sides of  the equations on vertical and horizontal vector fields. Condition (2.8) is less 

trivial. Let us verify it. Any vector field X decomposes as X = X H  "~ bl~l + b2~2 + b3~3, 
where XH is horizontal and ai = g(X, ~i) = ~li(X). Now if Y = YH + bl + be + b3, then 

g(X, Y) = g(XH, YH) + albl + a2b2 + a3b3. Since 4~1X = ~bl XH + a2se3 -- a3se2, we have 

g(dplX, ~IY)  = g(q~lXH, q~lYa) + a2b2 + a3b3. By (2) g(q)lXH, q~1YH) = g(XH, YH). 
Therefore, 

g(~bl X, q~l Y) = g(XH, YH) + a2b2 + a3b3 = g(X, Y) - albi 

~- g ( X ,  Y)  -- r / l ( X ) r / l ( Y  ).  (3.9) 

This proves (2.8) for i = 1, but exactly the same argument works for i = 2, 3. The proof 
of  Theorem 3.4 is now complete. [] 
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4. Remarks 

(1) Eqs. (3.3)-(3:7) show that the hypercontact structure (crk, qk, ~k, dpk, g) is canonically 
determined by the connection t~. Recall that the vector fields sek are the fundamental 
vector fields defined by the Pauli matrices (basis of su(2), see [4]). 

(2) In Theorem 3.4 we have dealt with the problem of showing that three contact forms 

are a hypercontact structure in a very special case. The general problem to show that 

three contact forms are a hypercontact structure seems very elusive. Geiges and Thomas 
have proved the existence of three linearly independent contact forms on any compact 

2-connected 7-manifold [9]. It is an open question whether these form a hypercontact 
structure. In the next section, we give a necessary condition for three contact forms to 

form a hypercontact structure: they must represent equivalent contact structures. 

(3) In the definition of a hypercontact structure the ingredients are tied up with strong 
relations. This suggests that they are not independent. For instance it is well known 
that in case of hyperkaehler manifolds (the even dimensional version of hypercontact 

structures), the riemannian metric is determined by the kaehler forms, which also de- 
termine the three complex structures. We just proved that in the hypercontact case, the 

riemannian metric is determined by the three contact forms, and so are the restrictions 

of the endomorphisms tPi to the horizontal distribution. 
(4) Also any linear combination of the three kaehler forms is again a kaehler form. If they 

had the same cohomology class, they would be all equivalent by Moser's theorem [ 14]. 

In [4], we proved the following result. 

Theorem 4.1. Let {(cq, or2, ct3), (t~i, ~i, r/i)i=1,2,3} be a hypercontact structure on a rie- 

mannian manifold (M, g) such that oti(~j) = O, Vi ~ j .  Then the three contact forms ui 

represent equivalent contact structures. 

Corollary 4.2. Suppose the Reeb fields o f  three contact forms on a 3-dimensional mani- 

fold parallelize it. Then the three contact forms represent equivalent contact structures. In 

particular the Reeb fields o f  three contact forms on a 3-manifold, one o f  them being tight 

and another being overtwist, are not everywhere linearly independent. 

Proof  Indeed, on a 3-manifold, three contact forms, with Reeb field everywhere linearly 

independent form a hypercontact structure [9]. [] 

Corollary 4.3. A necessary condition for  three contact forms oti with Reeb fields ~i such 
that c~i (~j ) = O, Vi ~ j ,  to be a hypercontact structure is that these contact forms determine 

equivalent contact structures. 
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